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The purpose of this paper is the construction of bi- and trivariate prewavelets
from box-spline spaces, i.e., piecewise polynomials of fixed degree on a uniform
mesh. They have especially small support and form Riesz bases of the wavelet
spaces, so they are stable. In particular, the supports achieved are smaller than
those of the prewavelets due to Riemenschneider and Shen in a recent, similar
construction. © 2001 Academic Press

1. INTRODUCTION

There are many useful ways to decompose uni- and multivariate func-
tions for the purpose of analysing, classifying, transmitting, or filtering the
signals represented by them. One such method which currently attracts a
lot of attention in applications and in the approximation theory commu-
nity is the (pre-)wavelets decomposition, which we describe below.
It is quite well understood how wavelets and prewavelets are generated

in one dimension, especially if we think of spline (pre-)wavelets [4] or the
so-called Daubechies wavelets [7]. However, there is still much work to do
in more than one dimension. Of course, a tensor product approach can
always be used, in particular in connection with spline wavelets, but as it is
with tensor product B-spline bases versus the far superior box-splines, their
supports are usually too large. This is highly relevant, for instance, if we
use such bases as finite elements for Galerkin-type methods in order to



solve partial differential equations with numerical methods, because they
make it expensive to compute the entries of stiffness matrices.
Therefore we address the construction of bi- and trivariate box-spline

prewavelets of small support in this note. To this end, we step back now
and recall the definition of prewavelets and of the so-called multiresolution
analysis (MRA) which is fundamental to the construction of all types of
wavelets. The goal always is to decompose any f ¥ L2(Rd), i.e., the square-
integrable real (or complex) valued functions in d dimensions into orthog-
onal series of basis functions. For this we require to start with a multire-
solution analysis, i.e., a nested sequence of closed subspaces Vj … L2(Rd)

· · ·V−1 … V0 … V1 … · · · … L2(Rd)

that satisfy the following three fundamental properties:

(i) f ¥ Vj Z f(2 · ) ¥ Vj+1 for all integers j,
(ii) suppose

3
.

j=−.
Vj={0}, 0

.

j=−.
Vj=L2(Rd)

(but see [1] for conditions under which (ii) is redundant),
(iii) there is a Riesz basis {B( · −k) | k ¥ Zd} of V0, i.e.,

V0=spana2(Zd){B( · −k) | k ¥ Zd},

where the coefficients of the spanning functions are always square-sum-
mable as indicated by the subscript, and there exist positive and finite
constants l and L such that for all c ¥ a2(Zd)

l ||c||2 [ > C
k ¥ Z

d
ckB( · −k)>

2
[ L ||c||2.

Here we use the notation c=(ck)k ¥ Z
d and the 2-norms denote the

Euclidean norm on a2(Zd) or on L2(Rd) as is appropriate from the context.
The properties (i)–(iii) have many fundamental consequences. One of

them is that if we can find a collection of square-integrable functions
named prewavelets k ¥ V1 0{0}, k + V0, call the set of prewavelets Y ¦ k,
such that the direct sum W of all

Wk :=spana2(Z){k( · −k) | k ¥ Zd}
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as k varies over Y, forms the orthogonal complement of V0 within V1, then

L2(Rd)= Â
.

j=−.
Wj,

where Wj denotes W with the functions scaled by 2 j. In other words,

W=Â
k ¥Y

Wk, Wj={g(2 j · ) | g ¥W}.

Therefore we have the desired decomposition of the whole of L2(Rd),
because the Wj are mutually orthogonal which follows from a standard
argument using the fact that the prewavelets k are orthogonal to V0 and
from (i). We remark that it is well known that in this setting Y contains
2d−1 elements.
Clearly, decompositions of this kind are efficient if the prewavelets are

compactly supported, and the smaller support, the better localisation and
the simpler their computation and application in filtering tools, etc. There-
fore there have been several approaches to construct prewavelets of small
support, most notably that of Riemenschneider and Shen [10], see also
Chui et al. [5], which uses the box-splines that are familiar from the book
[3] for instance. We will provide their formal definition as the inverse
Fourier transforms of certain simple entire functions in the next section but
just point out at this point that they are a multivariate generalisation of the
famous univariate B-splines, i.e., piecewise polynomials of compact support
that span multivariate spline spaces. The prewavelets of Riemenschneider
and Shen work only in less than four dimensions and so do ours which
are a development from their construction. Ours have smaller support
however, especially if smoothness is required. Our work was partly
motivated by the construction by Kotyczka and Oswald [8] of continuous
piecewise linear prewavelets with small support in two dimensions.
However, their construction is rather ad hoc and appears to have no
generalisation to higher smoothness.
The notation and a very short introduction to box-splines are given at

the beginning of the next section where the prewavelets are constructed as
well.

2. A CONSTRUCTION OF BOX SPLINE PREWAVELETS
IN Rd, d=1, 2, 3

Let v1, ..., va be different vectors in {−1, 0, 1}d=Zd 5 [−1, 1]d which
span Rd (linear independence is not required). The box-spline B associated
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with these vectors called directions with multiplicities n1, ..., na \ 1, respec-
tively, may be defined by its Fourier transform

B̂(u) :=11−zv1

iv1u
2n1 · · ·11−zva

ivau
2na, u=(u1, ..., ud) ¥ Rd,

where z=(z1, ..., zd)=(e−iu1, ..., e−iud), zvk :=zv1, k1 · · · zvd, kd , and vku denotes
the scalar product of the two vectors, v1, ku1+·· ·+vd, kud. This Fourier
transform is an entire function of exponential type and its inverse Fourier
transform is of compact support. The vj, k are the components of the
d-dimensional vectors vk.
We have further the so-called refinement equation in Fourier transform

form

B̂(2u)=2−nH(z) B̂(u),

where n :=;a

k=1 nk, and

H(z) :=(1+zv1)n1 · · · (1+zva)na. (2.1)

The refinement equation in this form is simple to derive by using the defi-
nition of B̂. If we take inverse Fourier transforms on both sides in the
penultimate display, we get that the spaces spanned by scales of the
translates of the functions B—as in Section 1 the spaces Vj—satisfy condi-
tion (i) of the requirements on a multiresolution analysis. More concretely,
we get an expression for B in terms of translates of its scaled version B(2 · ).
It is well known that the MRA’s other requirements hold too for box-
splines, where for (iii) there is an additional condition on the directions
required which we explain now and which has the required Riesz condi-
tions as a consequence. To this end, let

P(z) := C
j ¥ Z

d
(B f B(− · ))(j) z j= C

j ¥ Z
d
|B̂(u+2pj)|2,

where u is as above. If the matrix

[v1, ..., va]=r
v1, 1 · · · v1, a

x z x

vd, 1 · · · vd, a

s
is unimodular, i.e., |det X|=1 for any non-singular d×d submatrix X, then

P(z) > 0 for all u ¥ [−p, p]d (2.2)
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(Dahmen and Micchelli [6]). This implies (iii), where in fact l and L are
the minimum and the maximum of the periodic function `P(z) , respec-
tively. Let V denote the set of vertices of the d-dimensional unit cube
[0, 1]d. Define kj, j ¥V0{0}, by its Fourier transform

k̂j(2u)=Gj(z) B̂(u),

where the function Gj is to be specified later. Then for j ¥V0{0}, kj lies in
the prewavelet space, i.e., kj ¥ V1 and is orthogonal to V0 with respect to the
standard Euclidean inner product of square-integrable functions in the
sense of the introduction, if

P(z) H(z) Gj(z)+P((−1) j z) H((−1) j z) Gj((−1) j z) — 0. (2.3)

Here we use the notation (−1) j z :=((−1) j1 z1, ..., (−1) jd zd) with j=
(j1, ..., jd) ¥ Zd. Moreover, the multiinteger translates kj( · −k), j ¥
V0{0}, k ¥ Zd, form a Riesz basis of the space W … V1 which is the
orthogonal complement of V0 if and only if the (2d−1)×2d matrix

N :=[Gj((−1)k z)]j ¥V0{0}, k ¥V

has full rank for |z1 |=· · ·=|zd |=1. We wish to construct functions Gj
such that this is the case. Indeed, Riemenschneider and Shen [10] prove in
Proposition 3.6 and Corollary 3.7 that under this rank condition, the
aforementioned multiinteger translates of kj, j ¥V0{0}, together with
B( · −k), k ¥ Zd, form a Riesz basis of the whole space V1 that we wish to
decompose as V1=V0+W, see also Ron and Shen [2, 11, 12]. Thus it
follows from the orthogonality of the kj to V0 that the prewavelets
and their translates alone form a Riesz basis of W. We now proceed to
constructing Gj so that both (2.3) and the above rank condition hold.
To begin with, let g: VQV satisfy g(0)=0 and

(g(m)+g(n))(m+n) is odd for m ] n. (2.4)

Examples of such an g for dimensions d=1, 2, 3, as well as a remark that
no mapping with this property exists for d > 3, can be found in [9, 10].
The existence of this function is decisive for the whole construction.
Now define for j ¥V0{0}, recalling the definition of P from the above,

Gj(z)=zg(j)P((−1) j z) D
a

k=1
vk j odd

(1−zvk)nk D
a

k=1
vk j even

Sk(zvk), (2.5)

where the univariate Laurent polynomials Sk, k=1, ..., a, are yet to be
chosen.
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Noting that ((−1) j z)vk=(−1)vk j zvk and ((−1) j z)g(j)=(−1) jg(j) zg(j)=
−zg(j), we see that the Gj defined by (2.5) satisfy condition (2.3) regardless
of any particular choice of Sk, k=1, ..., a. Our special choice of the latter
will only be needed in order to fulfill the aforementioned rank condition.
Defining G0(z) :=P(z) H(z), we introduce the matrix

N̂ :=[Gj((−1)k z)]j, k ¥V.

We shall choose S1, ..., Sa so that N̂ is non-singular and hence N has full
rank everywhere on the unit sphere, which is the required rank property. In
order to evaluate the determinant more easily, we decompose the matrix as
follows. We let

M :=[G0((−1) j z) dj, k]j, k ¥V, M̃ :=5zg(j) D
a

i=1
vij odd

(1−z2vi)ni dj, k6
j, k ¥V

.

Then we have the matrix decomposition

N̂M=M̃A,

where we use the 2d×2d-matrix A=[Aj, k]j, k ¥V, with

A0, k=|G0((−1)k z)|2, k ¥V,

and for j ¥V0{0}, k ¥V, with the matrix entries

Aj, k=(−1)kg(j) P((−1) j+k z) P((−1)k z)

× D
a

i=1
vij even

(1+(−1)vik zvi)ni Si((−1)vik zvi).

Now the determinant of the diagonal matrix M is easy to evaluate as the
product

det M=D
j ¥V

P((−1) j z) H((−1) j z),

and, moreover, the determinant of M̃ is the product

det M̃=zz D
a

i=1
D
j ¥V
vij odd

(1−z2vi)ni=zz D
a

i=1
(1−z2vi)2

d−1ni

=zz D
j ¥V

H((−1) j z),
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where z :=;j ¥V g(j). Therefore, using the decomposition above,

zz det A=D
j ¥V

P((−1) j z) det N̂.

Therefore it suffices to show that A is non-singular so that the desired
result of full rank follows.
Now we observe that for each j ¥V0{0}, ;k ¥V Aj, k=0. Thus the

(2d−1)×(2d−1) signed minors of A taken from these rows are equal and
we can evaluate the determinant of A as

det A=1 C
k ¥V

A0, k 2 det[Aj, k]j, k ¥V0{0}.

We have, moreover, by (2.2)

C
k ¥V

A0, k= C
k ¥V

|G0((−1)k z)|2 > 0

and

det[Aj, k]j, k ¥V0{0}= D
k ¥V0{0}

P((−1)k z) det Ã,

where Ã is the (2d−1)×(2d−1) matrix such that for j, k ¥V0{0},

Ãj, k=(−1)kg(j) P((−1) j+k z) D
a

i=1
vij even

(1+(−1)vik zvi)ni Si((−1)vik zvi).

It remains to choose S1, ..., Sa so that Ã is non-singular to complete our
construction such that the Riesz basis property is guaranteed. To this end
we require two additional auxiliary results.

Lemma 2.1. For any function Q(z), let C be the (2d−1)×(2d−1) matrix
given by

Cj, k=(−1)kg(j) Q((−1) j+k z), j, k ¥V0{0}.

Then its determinant is the product

det C=−Q(z) 3 C
j ¥V

Q((−1) j z)24
2d−1−1

.

Proof. Let D be the 2d×2d matrix given by

Dj, k=(−1)kg(j) Q((−1) j+k z), j, k ¥V.
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Since the rows of D are orthogonal we have

DDT=3 C
j ¥V

Q((−1) j z)24 I2d,

where I2d denotes the 2d×2d identity matrix. Noting that D0, 0=Q(z) and

Dj, j=−Q(z), j ¥V0{0},

we have the determinant

det D=−3 C
j ¥V

Q((−1) j z)24
2d−1

.

Now let E be the product of D times a diagonal matrix

E :=D[Q((−1) j z) dj, k]j, k ¥V.

Then all the rows of E except for j=0 sum to zero, and we have, as for the
matrix A above,

det E=3 C
j ¥V

Q((−1) j z)24 D
j ¥V0{0}

Q((−1) j z) det C.

On the other hand, the determinant is

det E=D
j ¥V

Q((−1) j z) det D

=− D
j ¥V

Q((−1) j z) 3 C
j ¥V

Q((−1) j z)24
2d−1

,

and the result follows. L

Lemma 2.2. For any continuous functions Q(z), f1(z), ..., fa(z), let C be
the (2d−1)×(2d−1) matrix given by

Cj, k=(−1)kg(j) Q((−1) j+k z) D
a

i=1
vij even

fi((−1)vik zvi), j, k ¥V0{0}.

Then its determinant is

det C=−Q(z) 3 C
j ¥V

(Q((−1) j z))2 D
a

i=1
fi((−1)vij zvi)4

2d−1−1

.
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Proof. We may, without loss of generality, assume that f1, ..., fa > 0.
Let X, Y be diagonal (2d−1)×(2d−1) matrices defined by

Xj, k=dj, k D
a

i=1
vij odd

fi(zvi)1/2 fi(−zvi)1/2, j, k ¥V0{0},

Yj, k=dj, k D
a

i=1
fi((−1)vij+1 zvi)1/2, j, k ¥V0{0}.

Then for j, k ¥V0{0}, we have the product for each entry of the matrix
XCY

(XCY)j, k=(−1)kg(j) Q((−1) j+k z)

×D
a

i=1
fi((−1)vi(j+k) zvi) fi((−1)vi(j+k)+1 zvi)1/2.

Applying Lemma 2.1 with Q(z) replaced by Q(z) <a

i=1 fi(z
vi) fi(−zvi)1/2

gives the product determinant

det(XCY)=−Q(z) D
a

i=1
fi(zvi) fi(−zvi)1/2

×3 C
j ¥V

(Q((−1) j z))2 D
a

i=1
fi((−1)vij zvi)2 fi((−1)vij+1 zvi)4

2d−1−1

=−Q(z) D
a

i=1
fi(zvi)2

d−1
fi(−zvi)2

d−1−1/2

×3 C
j ¥V

(Q((−1) j z))2 D
a

i=1
fi((−1)vij zvi)4

2d−1−1

Since

det X=D
a

i=1
fi(zvi)2

d−2
fi(−zvi)2

d−2
,

det Y=D
a

i=1
fi(zvi)2

d−2
fi(−zvi)2

d−2−1/2,

the result follows. L

So from Lemma 2.2 we have the determinant of Ã

det Ã=−P(z) 3 C
j ¥V

P((−1) j z)2 D
a

i=1
(1+(−1)vij zvi)ni Si((−1)vij zvi)4

2d−1−1

.

24 BUHMANN, DAVYDOV, AND GOODMAN



If ni=2s, we choose Si(zvi)=(zvi)−s. Since for any z ¥ C with |z|=1, we
have the important identity

(1+z)2s=|1+z|2s z s,

we have

(1+(−1)vij zvi)ni Si((−1)vij zvi)=|1+(−1)vij zvi|ni.

If ni=2s−1, we choose Si(zvi)=(zvi)−s (1+zvi). Then

(1+(−1)vij zvi)ni Si((−1)vij zvi)=|1+(−1)vij zvi|ni+1.

Thus, for i=1, ..., a,

Si(zvi) :=˛
(zvi)−ni/2, if ni is even,
(zvi)−Kni/2L (1+zvi), if ni is odd,

(2.6)

and

det Ã=−P(z) 3 C
j ¥V

P((−1) j z)2 D
a

i=1
|1+(−1)vij zvi|mi 4

2d−1−1

< 0,

where mi=ni or ni+1. Therefore we have the required property, namely
that the prewavelets and their translates form a Riesz basis of W.

3. COMPARISON TO RIEMENSCHNEIDER–SHEN PREWAVELETS

The Riemenschneider–Shen prewavelets kj, j ¥V0{0}, are defined by
their Fourier transforms

k̂j(2u)=Hj(z) B̂(u),

with

Hj(z)=zg(j)P((−1) j z) H((−1) j z), (3.1)

where H is given by (2.1) and has to be replaced by H̄ in the above display
under certain parity conditions. ComparingHj(z) with Gj(z) defined by (2.5)
and (2.6) we note that significantly less of the translates of the box-spline
are needed in our construction of prewavelets as in the Riemenschneider–
Shen construction and therefore their support is smaller. This is because
the multiplication by the various factors included in the Si mainly intro-
duces a shift of the whole function, while there are several factors of
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H omitted in the definition of the Gjs as compared to the Hj above. The
gain becomes larger when there are larger multiplicities in the directions of
the defining box-spline. In the case d=1, however, Hj(z) and Gj(z) are
essentially the same and both lead to the univariate compactly supported
pre-wavelets by Chui and Wang [4].
For example, let us consider in detail the case of the box-spline in two

variables associated with the directions

v1=1
1
0
2 , v2=1

0
1
2 , v3=1

1
1
2 ,

with multiplicities n1=n2=n3=2. We have

H(z)=(1+z1)2 (1+z2)2 (1+z1z2)2.

Choosing g as in [10], we have by (3.1),

Hj(z)=P((−1) j z) ˛
z1z2(1−z1)2 (1+z2)2 (1−z1z2)2 if j=(1, 0),

z2(1−z1)2 (1−z2)2 (1−z1z2), if j=(0, 1),

z1(1−z1)2 (1−z2)2 (1+z1z2)2, if j=(1, 1).

In our construction, by (2.5) and (2.6),

Gj(z)=P((−1) j z) ˛
z−11 (1−z2)2, if j=(1, 0),

z−11 z−12 (1−z1)2, if j=(0, 1),

z−12 (1−z1z2)2, if j=(1, 1),

which leads to the masks of 51 nonzero coefficients for our prewavelets
versus 91 nonzero coefficients for the prewavelets constructed in [10].
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